Java

    今日:33| 主题:200
收藏本版 (18)
发表新帖

[架构师] 专为程序员设计的线性代数课程(已更新)

  [复制链接]

2391

主题

2383

帖子

46万

积分

管理员

Rank: 9Rank: 9Rank: 9

积分
463375
admin 发表于 2018-12-5 00:04:30
250 64
110133j17gz7xfb8zt8ffa.jpg
第1章 欢迎大家来到《专给程序员设计的线性代数》
欢迎大家来到《专给程序员设计的线性代数》,在这个课程中,我们将使用编程的方式,学习线性代数,这个近现代数学发展中最为重要的分支。学懂线性代数,是同学们深入学习人工智能,机器学习,深度学习,图形学,图像学,密码学,等等诸多领域的基础。从这个课程开始,让我们真正学懂线性代数!...

1-1 《专为程序员设计的线性代数课程》导学
1-2 课程学习的更多补充说明
1-3 线性代数与机器学习
1-4 课程使用环境搭建
第2章 一切从向量开始
向量,是线性代数研究的基本元素。在这一章,我们将引入向量。什么是向量?我们为什么要引入向量?进而,我们将使用不同的视角看待向量,定义向量的基本运算,体会数学研究过程中,从底层开始,一点一点向上搭建数学大厦的过程:)...

2-1 什么是向量.
2-2 向量的更多术语和表示法
2-3 实现属于我们自己的向量
2-4 向量的两个基本运算.
2-5 实现向量的基本运算.
2-6 向量基本运算的性质与数学大厦的建立.
2-7 零向量.
2-8 实现零向量
2-9 一切从向量开始
第3章 向量的高级话题
在这一章,我们将重点介绍向量的两个高级运算:规范化和点乘。对于点乘运算,我们将深入理解其背后的几何含义,并且结合诸多应用,理解点乘这个看起来奇怪的运算,背后的意义,以及在诸多领域的应用:)

3-1 规范化和单位向量.
3-2 实现向量规范化
3-3 向量的点乘与几何意义.
3-4 向量点乘的直观理解
3-5 实现向量的点乘操作
3-6 向量点乘的应用.
3-7 Numpy 中向量的基本使用
第4章 矩阵不只是 m*n 个数字
向量是对数的拓展,矩阵则是对向量的拓展。虽说线性代数研究的基本元素是向量,但其实大家更常看见矩阵!在这一章,我们将深入矩阵,不仅学习什么是矩阵,矩阵的运算等基础内容,更将从用更深刻的视角看待矩阵:矩阵也可以看做是对一个系统的描绘;以及,矩阵也可以被看做是向量的函数!...

4-1 什么是矩阵
4-2 实现属于我们自己的矩阵类
4-3 矩阵的基本运算和基本性质
4-4 实现矩阵的基本运算
4-5 把矩阵看作是对系统的描述
4-6 矩阵和向量的乘法与把矩阵看作向量的函数
4-7 矩阵和矩阵的乘法
4-8 实现矩阵的乘法
4-9 矩阵乘法的性质和矩阵的幂
4-10 矩阵的转置
4-11 实现矩阵的转置和Numpy中的矩阵
第5章 矩阵的应用和更多矩阵相关的高级话题
在我们学习了矩阵之后,就已经可以将线性代数的知识应用在诸多领域了!在这一章,我们将把线性代数具体应用在图形学中!同时,我们将继续学习和矩阵相关的诸多概念,如单位矩阵和矩阵的逆。最重要的是:我们将揭示看待矩阵的一个重要视角:把矩阵看作是空间! ...

5-1 更多变换矩阵
5-2 矩阵旋转变换和矩阵在图形学中的应用
5-3 实现矩阵变换在图形学中的应用
5-4 从缩放变换到单位矩阵
5-5 矩阵的逆
5-6 实现单位矩阵和numpy中矩阵的逆
5-7 矩阵的逆的性质
5-8 看待矩阵的关键视角:用矩阵表示空间
5-9 总结:看待矩阵的四个重要视角
第6章 线性系统
线性系统听起来很高大上,但是它的本质就是线性方程组!这个看似简单的形式,其实也隐藏着不小的学问,同时在各个领域都被大量使用。在这一章,我们将看到当引入矩阵,向量这些概念以后,求解线性方程组是多么的容易。...

6-1 线性系统与消元法
6-2 高斯消元法
6-3 高斯-约旦消元法
6-4 实现高斯-约旦消元法
6-5 行最简形式和线性方程组解的结构
6-6 直观理解线性方程组解的结构
6-7 更一般化的高斯-约旦消元法
6-8 实现更一般化的高斯-约旦消元法
6-9 齐次线性方程组
第7章 初等矩阵和矩阵的可逆性
在上一章,我们详细的学习了线性系统的求解。在这一章,我们就将看到线性系统的一个重要的应用——求解矩阵的逆。千万不要小瞧矩阵的逆,一个矩阵是否可逆,和诸多线性代数领域的高级概念相关。在这一章,我们也将一窥一二。同时,我们还会学习初等矩阵的概念,同时,涉足我们在这个课程中将向大家介绍的第一个矩阵分解算法...

7-1 线性系统与矩阵的逆
7-2 实现求解矩阵的逆
7-3 初等矩阵
7-4 从初等矩阵到矩阵的逆
7-5 为什么矩阵的逆这么重要
7-6 矩阵的LU分解
7-7 实现矩阵的LU分解
7-8 非方阵的LU分解,矩阵的LDU分解和PLU分解
7-9 矩阵的PLUP分解和再看矩阵的乘法
第8章 线性相关,线性无关与生成空间
空间,或许是线性代数世界里最重要的概念了。在这一章,我们将带领大家逐渐理解,听起来高大上又抽象的空间,到底是什么意思?我们为什么要研究空间?空间又和我们之前探讨的向量,矩阵,线性系统,等等等等,有什么关系。 ...

8-1 线性组合
8-2 线性相关和线性无关
8-3 矩阵的逆和线性相关,线性无关
8-4 直观理解线性相关和线性无关
8-5 生成空间
8-6 空间的基
8-7 空间的基的更多性质
8-8 本章小结:形成自己的知识图谱
第9章 向量空间,维度,和四大子空间
在之前的线性代数的学习中,我们一直在使用诸如2维空间,3维空间,n维空间这样的说法,但到底什么是空间,什么是维度,我们却没有给出严格的定义。在这一章,我们就将严谨的来探讨,到底什么是空间,什么是维度,进而,引申出更多线性代数领域的核心概念。 ...

9-1 空间,向量空间和欧几里得空间
9-2 广义向量空间
9-3 子空间
9-4 直观理解欧几里得空间的子空间
9-5 维度
9-6 行空间和矩阵的行秩
9-7 列空间
9-8 矩阵的秩和矩阵的逆
9-9 实现矩阵的秩
9-10 零空间 与 秩-零化度定理
9-11 零空间与看待零空间的三个视角
9-12 左零空间,四大子空间和研究子空间的原因
第10章 正交性
相信,上一章对空间的探讨,已经颠覆了大家对空间的理解:)但是,通常情况下,我们依然只对可以被正交向量定义的空间感兴趣。在这一章,我们将看到正交的诸多优美性质,如何求出空间的正交基,以及听起来高大上的,矩阵的QR分解。...

第11章 再看线性变换
在之前学习矩阵的时候,相信同学们已经对线性变换有了基本认识。在这一章,我们将重新使用“空间”的视角,再来看看,到底什么是线性变换?线性变换背后,还隐藏着怎样的性质?

第12章 行列式
行列式是在线性代数的世界里,被定义的另一类基本元素。在这一章,我们将学习什么是行列式,以及行列式的基本运算规则,为后续两章学习更加重要的线性代数内容,打下坚实的基础!

第13章 特征值与特征向量
特征值和特征向量,或许是线性代数的世界中,最为著名的内容了。到底什么是特征值?什么是特征向量?我们为什么要研究特征值和特征向量?在这一章都将一一揭晓。

第14章 矩阵对角化与SVD
在学习了特征值与特征向量以后,我们将在这一章,看线性代数领域中一类特殊的矩阵——对角矩阵,进而,我们将来深入分析学习或许是线性代数的世界中,最为重要一个矩阵分解方式——SVD。

第15章 更广阔的线性代数世界,大家加油!
线性代数更加伟大的意义在于,其中的很多内容不仅仅在欧拉空间中成立,在更抽象的空间中依然成立!什么是广义向量空间?什么是内积空间?在这一章,我将简单提及这些内容,感兴趣的同学可以以此为起点,向更加理论化的线性代数的世界前进!大家加油!...


下载地址:

游客,如果您要查看本帖隐藏内容请回复




回复

使用道具 举报

9911911 发表于 2018-12-5 00:07:03
啥也不说了,感谢楼主分享哇!
回复

使用道具 举报

sand 发表于 2018-12-5 02:40:48
确实是难得好帖啊,顶先
回复

使用道具 举报

everyone 发表于 2018-12-5 07:59:38
啥也不说了,感谢楼主分享哇!
回复

使用道具 举报

abc874731847 发表于 2018-12-5 08:20:39
专为程序员设计的线性代数课程(已更新
回复

使用道具 举报

catylee 发表于 2018-12-5 09:06:09
啥也不说了,感谢楼主分享哇!
回复

使用道具 举报

hong云梦 发表于 2018-12-5 09:53:52
专为程序员设计的线性代数课程
回复

使用道具 举报

sqlplusw 发表于 2018-12-5 09:55:33
正需要,支持楼主大人了!
回复

使用道具 举报

lp54459622 发表于 2018-12-5 09:56:59
确实是难得好帖啊,顶先
回复

使用道具 举报

snowlu 发表于 2018-12-5 09:59:12
正需要,支持楼主大人了!
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

平台简介

本站所有资源均是网上搜集或网友投稿提供,本站内容仅限用于学习和交流,将不对任何资源负法律责任。如有侵犯您的版权,请及时发邮件联系我们([email protected]),我们将会尽快处理,谢谢!

启云社区

Powered by Discuz! X3.4   © 2017-2018

返回顶部 返回列表